Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.109
Filtrar
1.
Curr Alzheimer Res ; 20(1): 29-37, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36892031

RESUMO

OBJECTIVE: The objective of this study is to investigate the neuroprotective effects of ß- sitosterol using the AlCl3 model of Alzheimer's Disease. METHODS: AlCl3 model was used to study cognition decline and behavioral impairments in C57BL/6 mice. Animals were randomly assigned into 4 groups with the following treatments: Group 1 received normal saline for 21 days, Group 2 received AlCl3 (10 mg/kg) for 14 days; Group 3 received AlCl3(10 mg/kg) for 14 days + ß-sitosterol (25mg/kg) for 21 days; while Group 4 was administered ß-sitosterol (25mg/kg) for 21 days. On day 22, we performed the behavioral studies using a Y maze, passive avoidance test, and novel object recognition test for all groups. Then the mice were sacrificed. The corticohippocampal region of the brain was isolated for acetylcholinesterase (AChE), acetylcholine (ACh), and GSH estimation. We conducted histopathological studies using Congo red staining to measure ß -amyloid deposition in the cortex and hippocampal region for all animal groups. RESULTS: AlCl3 successfully induced cognitive decline in mice following a 14-day induction period, as shown by significantly decreased (p < 0.001) in step-through latency, % alterations, and preference index values. These animals also exhibited a substantial decrease in ACh (p <0.001) and GSH (p < 0.001) and a rise in AChE (p < 0.001) compared to the control group. Mice administered with AlCl3 and ß-sitosterol showed significantly higher step-through latency time, % alteration time, and % preference index (p < 0.001) and higher levels of ACh, GSH, and lower levels of AChE in comparison to the AlCl3 model. AlCl3-administered animals also showed higher ß-amyloid deposition, which got significantly reduced in the ß-sitosterol treated group. CONCLUSION: AlCl3 was effectively employed to induce a cognitive deficit in mice, resulting in neurochemical changes and cognitive decline. ß -sitosterol treatment mitigated AlCl3-mediated cognitive impairment.


Assuntos
Cloreto de Alumínio , Doença de Alzheimer , Disfunção Cognitiva , Fármacos Neuroprotetores , Sitosteroides , Animais , Camundongos , Acetilcolina/metabolismo , Acetilcolinesterase/metabolismo , Cloreto de Alumínio/administração & dosagem , Cloreto de Alumínio/toxicidade , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/prevenção & controle , Aprendizagem da Esquiva/efeitos dos fármacos , Estudos de Casos e Controles , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Cognição/efeitos dos fármacos , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/prevenção & controle , Simulação por Computador , Modelos Animais de Doenças , Glutationa/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Sitosteroides/farmacologia
2.
Behav Brain Res ; 422: 113759, 2022 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-35051488

RESUMO

Conditioned avoidance responses (CAR) behavior is a classical instrumental response paradigm, which is widely used to study aversive conditioning and defensive motivation behavior. Previous studies have shown that dopamine D1 and D2 receptors are involved in CAR behavior; however, it is unclear in which brain regions that dopamine evokes CAR behavior. The aim of the study is to investigate whether dopamine triggers CAR behavior via activating dopamine D1 or D2 receptors in the shell of nucleus accumbens or dorsolateral striatum. The present study found that infusion of the dopamine D2 receptor agonist quinpirole, but not D1 receptor agonist SKF38393, into the shell of nucleus accumbens evoked CAR behavior in reserpine-treated rats. Whereas, infusion of neither SKF38393 nor quinpirole into the dorsolateral striatum evoked CAR behavior. In addition, infusion of quinpirole into the shell of nucleus accumbens enhanced CAR behavior in the unsuccessful trained rats without affecting the motor function in the balance beam and locomotor tests. In conclusion, activation of dopamine D2, but not D1 receptors in the shell of nucleus accumbens evokes CAR behavior. However, activation of dopamine D1 and D2 receptors in the dorsolateral striatum does not evoke CAR behavior. It is suggested that the shell of nucleus accumbens is the critical brain region for dopamine to invoke CAR behavior, and activation of dopamine D2 receptors in the shell of nucleus accumbens is sufficient and necessary to evoke CAR behavior.


Assuntos
Aprendizagem da Esquiva/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Condicionamento Clássico/efeitos dos fármacos , Agonistas de Dopamina/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Receptores de Dopamina D2/efeitos dos fármacos , Animais , Masculino , Neostriado/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D1/efeitos dos fármacos
3.
Sci Rep ; 12(1): 822, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039558

RESUMO

Scoparone (6,7-dimethoxycoumarin) is a simple coumarin from botanical drugs of Artemisia species used in Traditional Chinese Medicine and Génépi liquor. However, its bioavailability to the brain and potential central effects remain unexplored. We profiled the neuropharmacological effects of scoparone upon acute and subchronic intraperitoneal administration (2.5-25 mg/kg) in Swiss mice and determined its brain concentrations and its effects on the endocannabinoid system (ECS) and related lipids using LC-ESI-MS/MS. Scoparone showed no effect in the forced swimming test (FST) but, administered acutely, led to a bell-shaped anxiogenic-like behavior in the elevated plus-maze test and bell-shaped procognitive effects in the passive avoidance test when given subchronically and acutely. Scoparone rapidly but moderately accumulated in the brain (Cmax < 15 min) with an apparent first-order elimination (95% eliminated at 1 h). Acute scoparone administration (5 mg/kg) significantly increased brain arachidonic acid, prostaglandins, and N-acylethanolamines (NAEs) in the FST. Conversely, subchronic scoparone treatment (2.5 mg/kg) decreased NAEs and increased 2-arachidonoylglycerol. Scoparone differentially impacted ECS lipid remodeling in the brain independent of serine hydrolase modulation. Overall, the unexpectedly potent central effects of scoparone observed in mice could have toxicopharmacological implications for humans.


Assuntos
Encéfalo/metabolismo , Cumarínicos/farmacologia , Animais , Ácido Araquidônico/metabolismo , Ácidos Araquidônicos/metabolismo , Aprendizagem da Esquiva/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Disponibilidade Biológica , Cognição/efeitos dos fármacos , Cumarínicos/administração & dosagem , Cumarínicos/farmacocinética , Endocanabinoides/metabolismo , Etanolaminas/metabolismo , Glicerídeos/metabolismo , Infusões Parenterais , Metabolismo dos Lipídeos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Prostaglandinas/metabolismo
4.
Behav Pharmacol ; 33(1): 42-50, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34954711

RESUMO

Agmatine, a polyamine derived from l-arginine, has been suggested to modulate memory. However, the available evidence regarding the effect of agmatine on the memory of intact animals is contradictory. This study aimed to assess the dose-response effect of subchronic agmatine on passive avoidance memory and anxiety-like parameters of elevated plus maze in adult intact mice. Furthermore, considering the roles of Akt/GSK-3ß signaling pathway in memory and Alzheimer's disease, the hippocampal contents of phosphorylated and total forms of Akt and GSK-3ß proteins were determined using the western blot technique. Agmatine was administered intraperitoneally at the doses of 10, 20, 30, 40 and 80 mg/kg/daily to adult male NMRI mice for 10 days after which the behavioral assessments were performed. Upon completion of the passive avoidance test, the hippocampi were removed for western blot analysis to detect the phosphorylated and total levels of Akt and GSK-3ß proteins. Results showed the biphasic effect of agmatine on passive avoidance memory; in lower doses (10, 20 and 30 mg/kg), agmatine impaired memory whereas in higher ones (40 and 80 mg/kg) improved it. Though, agmatine in none of the doses affected animals' anxiety-like parameters in an elevated plus maze. Moreover, the memory-improving doses of agmatine augmented Akt/GSK-3ß pathway. This study showed the biphasic effect of agmatine on passive avoidance memory and an augmentation of hippocampal Akt/GSK-3ß signaling pathway following the memory-improving doses of this polyamine.


Assuntos
Agmatina/farmacologia , Doença de Alzheimer/tratamento farmacológico , Aprendizagem da Esquiva , Glicogênio Sintase Quinase 3 beta/metabolismo , Memória/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Ansiedade/tratamento farmacológico , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/fisiologia , Comportamento Animal/efeitos dos fármacos , Fatores Biológicos/farmacologia , Relação Dose-Resposta a Droga , Monitoramento de Medicamentos/métodos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Camundongos , Nootrópicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento
5.
Behav Brain Res ; 419: 113671, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34788697

RESUMO

Schizophrenia is severe neuropsychiatric disease, which is commonly accompanied not only by positive or negative symptoms, but also by cognitive impairment. To study neuronal mechanisms underlying cognitive distortions and mechanisms underlying schizophrenia, animal pharmacological models of cognitive symptoms are commonly used. Between various cognitive impairments in schizophrenia patients, disturbed time perception has often been reported. Here, we examined temporal and spatial cognition in a modified Carousel maze task in the animal model of schizophrenia induced by non-competitive NMDA-receptor antagonists MK-801. Male Long-Evans rats (n = 18) first learned to avoid the aversive sector on a rotating arena in both dark and light intervals. We verified that during dark, rats used temporal cues, while during light they relied predominantly on spatial cues. We demonstrated that the timing strategy depends on the stable rotation speed of the arena and on the repositioning clues such as aversive stimuli. During testing (both in light and dark intervals), half of the rats received MK-801 and the control half received saline solution. We observed dose-dependent disruptions of both temporal and spatial cognition. Namely, both doses of MK-801 (0.1 and 0.12 mg/kg) significantly impaired timing strategy in the dark and increased locomotor activity. MK-801 dose 0.1 mg/kg, but not 0.12, also impaired spatial avoidance strategy in light. We found that the timing strategy is more sensitive to NMDA antagonist MK-801 than the spatial strategy. To conclude, a modified version of the Carousel maze is a useful and sensitive tool for detecting timing impairments in the MK-801 induced rodent model of schizophrenia.


Assuntos
Aprendizagem da Esquiva/efeitos dos fármacos , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/fisiopatologia , Maleato de Dizocilpina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Aprendizagem em Labirinto/efeitos dos fármacos , Esquizofrenia/induzido quimicamente , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Maleato de Dizocilpina/administração & dosagem , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Masculino , Ratos , Ratos Long-Evans
6.
Chem Biol Interact ; 351: 109736, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34740600

RESUMO

The aim of the present study was investigate the binding affinity of 5-((4-methoxyphenyl)thio)benzo[c][1,2,5]thiadiazole (MTDZ) with acetylcholinesterase (AChE). We also evaluated the effect of MTDZ against scopolamine (SCO)-induced amnesia in mice and we looked at the toxicological potential of this compound in mice. The binding affinity of MTDZ with AChE was investigated by molecular docking analyses. For an experimental model, male Swiss mice were treated daily with MTDZ (10 mg/kg, intragastrically (i.g.)) or canola oil (10 ml/kg, i.g.), and induced, 30 min later, with injection of SCO (0.4 mg/kg, intraperitoneally (i.p.)) or saline (0.9%, 5 ml/kg, i.p.) daily. From day 1 to day 10, mice were submitted to the behavioral tasks (Barnes maze, open-field, object recognition and location, Y-maze and step-down inhibitory avoidance tasks), 30 min after induction with SCO. On the tenth day, the animals were euthanized and blood was collected for the analysis of biochemical markers (creatinine, aspartate (AST), and alanine (ALT) aminotransferase). MTDZ interacts with residues of the AChE active site. SCO caused amnesia in mice by changing behavioral tasks. MTDZ treatment attenuated the behavioral changes caused by SCO. In ex vivo assay, MTDZ also protected against the alteration of AChE activity, reactive species (RS) levels, thiobarbituric acid reative species (TBARS) levels, catalase (CAT) activity in tissues, as well as in transaminase activities of plasma caused by SCO in mice. In conclusion, MTDZ presented anti-amnesic action through modulation of the cholinergic system and provided protection from kidney and liver damage caused by SCO.


Assuntos
Acetilcolinesterase/metabolismo , Amnésia/tratamento farmacológico , Inibidores da Colinesterase/uso terapêutico , Nootrópicos/uso terapêutico , Sulfetos/uso terapêutico , Tiadiazóis/uso terapêutico , Amnésia/induzido quimicamente , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Inibidores da Colinesterase/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Simulação de Acoplamento Molecular , Nootrópicos/metabolismo , Ligação Proteica , Escopolamina , Sulfetos/metabolismo , Tiadiazóis/metabolismo
7.
Behav Brain Res ; 416: 113541, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34425184

RESUMO

Avoidance of sick individuals is vital to the preservation of one's health and preventing transmission of communicable diseases. To do this successfully, one must identify social cues for sickness, which include sickness behaviors and chemosignals, and use this information to orchestrate social interactions. While many social species are highly capable with this process, the neural mechanisms that provide for social responses to sick individuals are only partially understood. To this end, we used a task in which experimental rats were allowed to investigate two conspecifics, one healthy and one sick. To imitate sickness, one conspecific received the viral mimic Polyinosinic:polycytidylic acid (Poly I:C) and the other saline. In a 5-minute social preference test, experimental male and female adult rats avoided Poly I:C treated adult conspecifics but did not adjust social interaction in response to Poly I:C treated juvenile conspecifics. Seeking a neural locus of this behavior, we inhibited the insular cortex, a region necessary for social behaviors directed toward conspecifics in distress. Insular cortex inactivation via administration of the GABAA agonist muscimol to experimental rats prior to social preference tests eliminated the preference to avoid sick adult conspecifics. These results suggest that some aspect of conspecific illness may be encoded in the insular cortex which is anatomically positioned to coordinate a situationally appropriate social response.


Assuntos
Aprendizagem da Esquiva/efeitos dos fármacos , Comportamento Animal/fisiologia , Agonistas de Receptores de GABA-A/farmacologia , Comportamento de Doença/efeitos dos fármacos , Córtex Insular/efeitos dos fármacos , Muscimol/farmacologia , Interação Social , Animais , Antivirais/administração & dosagem , Feminino , Masculino , Odorantes , Poli I-C/administração & dosagem , Ratos
8.
Nutr Neurosci ; 25(1): 192-206, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34165393

RESUMO

Objective: While stress reportedly impairs memory, saffron enhances it. This study investigated the therapeutic effects of saffron extract on different memory types, anxiety-like behavior, and expressions of BDNF and TNF-α genes in sub-chronically stressed rats.Methods: Rats were randomly assigned to control, restraint stress (6 h/day/7 days), two 7-days saffron treatments with 30 and 60 mg/kg, and two stress-saffron groups (30 and 60 mg/kg/7 post-stress days). Serum cortisol level and hippocampal BDNF and TNF-α gene expressions were measured. Open field, passive avoidance, novel object recognition, and object location tests were performed to assess anxiety-like behavior and avoidance as well as cognitive and spatial memories, respectively.Results: The low saffron dose in the sub-chronic stressed group led to a significant increase in passive avoidance latency from day 3 onward whereas this effect was observed after 7 days under the high-dose treatment that simultaneously led to a significant decline in serum cortisol level. While the low saffron dose led to a sharp drop in hippocampal TNF-α gene expression, the high dose significantly increased the hippocampal BDNF gene expression in the sub-chronic stress group. Finally, both saffron doses reduced anxiety in the stressed groups.Conclusion: Compared to the low saffron dose, the high dose had a latent but long-lasting impact. Cognitive and spatial memories remained unaffected by either stress or saffron treatment. In addition, only the high saffron dose reversed anxiety in the sub-chronically stressed group. These findings suggest that various doses of saffron act differently on different brain functions under sub-chronic stress conditions.Abbreviations: Brain derived neurotrophic factor (BDNF), tumor necrosis factor-α (TNF-α), hypothalamic-pituitary-adrenal axis (HPA), novel object recognition task (NORT), novel object location task (NOLT), open field test (OFT), passive avoidance (PA).


Assuntos
Ansiedade/tratamento farmacológico , Fator Neurotrófico Derivado do Encéfalo/genética , Crocus/química , Extratos Vegetais/administração & dosagem , Estresse Psicológico/fisiopatologia , Fator de Necrose Tumoral alfa/genética , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Relação Dose-Resposta a Droga , Expressão Gênica/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Memória/efeitos dos fármacos , Fitoterapia , Ratos , Restrição Física , Estresse Psicológico/psicologia
9.
Basic Clin Pharmacol Toxicol ; 130(1): 28-34, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34622546

RESUMO

Hypertension is a common comorbid condition with epilepsy, and drug interactions between antihypertensive and antiepileptic drugs (AEDs) are likely in patients. Experimental studies showed that centrally active imidazoline compounds belonging to antihypertensive drugs can affect seizure susceptibility. The purpose of this study was to assess the effect of moxonidine, an I1 -imidazoline receptor agonist, on the anticonvulsant efficacy of numerous AEDs (carbamazepine, phenobarbital, valproate, phenytoin, oxcarbazepine, topiramate and lamotrigine) in the mouse model of maximal electroshock. Besides, the combinations of moxonidine and AEDs were investigated for adverse effects in the passive avoidance task and the chimney test. Drugs were administered intraperitoneally (ip). Moxonidine at doses of 1 and 2 mg/kg ip did not affect the convulsive threshold. Among tested AEDs, moxonidine (2 mg/kg) potentiated the protective effect of valproate against maximal electroshock. This interaction could be pharmacodynamic because the brain concentration of valproate was not significantly changed by moxonidine. The antihypertensive drug did not cause adverse effects when combined with AEDs. This study shows that moxonidine may have a neutral or positive effect on the anticonvulsant activity of AEDs in patients with epilepsy. The enhancement of the anticonvulsant action of valproate by moxonidine needs further investigations to elucidate potential mechanisms involved.


Assuntos
Anticonvulsivantes/farmacologia , Anti-Hipertensivos/farmacologia , Imidazóis/farmacologia , Convulsões/tratamento farmacológico , Animais , Anticonvulsivantes/farmacocinética , Anti-Hipertensivos/administração & dosagem , Aprendizagem da Esquiva/efeitos dos fármacos , Encéfalo/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Interações Medicamentosas , Eletrochoque , Imidazóis/administração & dosagem , Masculino , Camundongos , Distribuição Tecidual
10.
J Biomed Sci ; 28(1): 83, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34852810

RESUMO

Addictive drugs are habit-forming. Addiction is a learned behavior; repeated exposure to addictive drugs can stamp in learning. Dopamine-depleted or dopamine-deleted animals have only unlearned reflexes; they lack learned seeking and learned avoidance. Burst-firing of dopamine neurons enables learning-long-term potentiation (LTP)-of search and avoidance responses. It sets the stage for learning that occurs between glutamatergic sensory inputs and GABAergic motor-related outputs of the striatum; this learning establishes the ability to search and avoid. Independent of burst-firing, the rate of single-spiking-or "pacemaker firing"-of dopaminergic neurons mediates motivational arousal. Motivational arousal increases during need states and its level determines the responsiveness of the animal to established predictive stimuli. Addictive drugs, while usually not serving as an external stimulus, have varying abilities to activate the dopamine system; the comparative abilities of different addictive drugs to facilitate LTP is something that might be studied in the future.


Assuntos
Comportamento Aditivo/psicologia , Dopamina/deficiência , Neurônios Dopaminérgicos/metabolismo , Aprendizagem/efeitos dos fármacos , Potenciação de Longa Duração , Reflexo , Animais , Comportamento Apetitivo/efeitos dos fármacos , Aprendizagem da Esquiva/efeitos dos fármacos , Camundongos , Ratos , Reflexo/efeitos dos fármacos
11.
Cell Mol Biol (Noisy-le-grand) ; 67(2): 83-88, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34817335

RESUMO

Depressive anxiety is one of the most emotional disorders in our industrial societies. Many treatments of phobias exist and are based on plant extracts therapies, which play an important role in the amelioration of the behavior. Our study aimed to evaluate the adaptogenic activity of different essential oils provided from local plants: Cinnamomum camphora (Camphora), Eucalyptus globulus (Blue gum), Lavandula stœchas (Topped lavender) and Rosmarinus officinalis (Rosemary) on Wistar rats. The adaptogenic activity was evaluated on the elevated plus-maze. The efficacy of the extract (200 mL/kg) was compared with the standard anxiolytic drug Diazepam® 1 mg. Animals administered by the essential oil of Lavandula stœchas, Cinnamomum camphora, Rosmarinus officinalis and Eucalyptus globulus showed a behavior similar to those treated with Diazepam®. For groups treated with the following essential oils: Rosmarinus officinalis, Lavandula stoechas and Cinnamomum camphora at a dose of 200 mL/kg, we notice an increase in the time spent on the open arms of the elevated plus-maze and a decrease in time spent on the closed arms of the elevated plus-maze, especially for Rosmarinus officinalis, which explains the anxiolytic effect of these plants. We also notice a decrease in the number of entries in closed arms, open arms and the number of passing to the central square. The increase in the number of entries to open arms with Eucalyptus globulus essential oil shows a reduction in anxiety behavior in rodents and this shows that these plants have an inhibitory effect.


Assuntos
Cinnamomum camphora/química , Eucalyptus/química , Lavandula/química , Medicina Tradicional/métodos , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Rosmarinus/química , África do Norte , Animais , Ansiedade/fisiopatologia , Ansiedade/prevenção & controle , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/fisiologia , Humanos , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Óleos Voláteis/isolamento & purificação , Óleos de Plantas/isolamento & purificação , Ratos Wistar
12.
Sci Rep ; 11(1): 22852, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819526

RESUMO

Depression and anxiety, two of the most common mental health disorders, share common symptoms and treatments. Most pharmacological agents available to treat these disorders target monoamine systems. Currently, finding the most effective treatment for an individual is a process of trial and error. To better understand how disease etiology may predict treatment response, we studied mice exposed developmentally to the selective serotonin reuptake inhibitor (SSRI) fluoxetine (FLX). These mice show the murine equivalent of anxiety- and depression-like symptoms in adulthood and here we report that these mice are also behaviorally resistant to the antidepressant-like effects of adult SSRI administration. We investigated whether tianeptine (TIA), which exerts its therapeutic effects through agonism of the mu-opioid receptor instead of targeting monoaminergic systems, would be more effective in this model. We found that C57BL/6J pups exposed to FLX from postnatal day 2 to 11 (PNFLX, the mouse equivalent in terms of brain development to the human third trimester) showed increased avoidant behaviors as adults that failed to improve, or were even exacerbated, by chronic SSRI treatment. By contrast, avoidant behaviors in these same mice were drastically improved following chronic treatment with TIA. Overall, this demonstrates that TIA may be a promising alternative treatment for patients that fail to respond to typical antidepressants, especially in patients whose serotonergic system has been altered by in utero exposure to SSRIs.


Assuntos
Antidepressivos de Segunda Geração/toxicidade , Antidepressivos Tricíclicos/farmacologia , Aprendizagem da Esquiva/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Fluoxetina/toxicidade , Inibidores Seletivos de Recaptação de Serotonina/toxicidade , Tiazepinas/farmacologia , Animais , Animais Recém-Nascidos , Encéfalo/crescimento & desenvolvimento , Comportamento Alimentar/efeitos dos fármacos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Teste de Campo Aberto/efeitos dos fármacos
13.
Pharmacol Biochem Behav ; 211: 173286, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34634300

RESUMO

RATIONALE: Exposure to a drug can subsequently impact its own reactivity as well as that of other drugs. Given that users of synthetic cathinones, i.e., "bath salts", typically have extensive and varied drug histories, an understanding of the effects of drug history on the behavioral and physiological consequences of synthetic cathiones may be important to their abuse liability. OBJECTIVES: The goal of the current work was to assess the effects of an ethanol pre-exposure on the rewarding and aversive effects of α-PVP. METHODS: Adult male Sprague Dawley rats were exposed to ethanol prior to combined conditioned taste avoidance/conditioned place preference training in which rats were injected with 1.5, 3 or 5 mg/kg of racemic α-PVP or vehicle. Following a 7-day washout period, rats were then tested for thermoregulatory effects of α-PVP using subcutaneous probes to measure body temperature changes over the course of 8 h. This was followed 10 days later by assessments for α-PVP-induced locomotor activity and stereotypies over a 1-h session. RESULTS: α-PVP induced significant dose- and trial-dependent taste avoidance that was significantly attenuated by ethanol history and dose- and time-dependent increases in locomotor activity that were significantly increased by ethanol. α-PVP also induced place preferences and dose- and time-dependent increases in body temperature, but these measures were unaffected by ethanol history. CONCLUSIONS: α-PVP's aversive effects (as measured by taste avoidance) were attenuated, while its rewarding effects (as indexed by place preference conditioning) were unaffected, by ethanol pre-exposure. Such a pattern may indicate increased α-PVP abuse liability, as changes in the balance of aversion and reward may impact overall drug effects and likelihood of drug intake. Future self-administration studies will be necessary to explore this possibility.


Assuntos
Aprendizagem da Esquiva/efeitos dos fármacos , Condicionamento Clássico/efeitos dos fármacos , Etanol/farmacologia , Pentanonas/farmacologia , Pirrolidinas/farmacologia , Recompensa , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Alcaloides/farmacologia , Animais , Temperatura Corporal/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/farmacologia , Locomoção/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley , Autoadministração , Paladar/efeitos dos fármacos
14.
Molecules ; 26(19)2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34641522

RESUMO

Schizophrenia is a chronic mental disorder that disturbs feelings and behavior. The symptoms of schizophrenia fall into three categories: positive, negative, and cognitive. Cognitive symptoms are characterized by memory loss or attentional deficits, and are especially difficult to treat. Thus, there is intense research into the development of new treatments for schizophrenia-related responses. One of the possible strategies is connected with cannabidiol (CBD), a cannabinoid compound. This research focuses on the role of CBD in different stages of memory (acquisition, consolidation, retrieval) connected with fear conditioning in the passive avoidance (PA) learning task in mice, as well as in the memory impairment typical of cognitive symptoms of schizophrenia. Memory impairment was provoked by an acute injection of the N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 (animal model of schizophrenia). Our results revealed that an acute injection of CBD (30 mg/kg; intraperitoneally (i.p.) improved all phases of long-term fear memory in the PA test in mice. Moreover, the acute injection of non-effective doses of CBD (1 or 5 mg/kg; i.p.) attenuated the memory impairment provoked by MK-801 (0.6 mg/kg; i.p.) in the consolidation and retrieval stages of fear memory, but not in the acquisition of memory. The present findings confirm that CBD has a positive influence on memory and learning processes in mice, and reveals that this cannabinoid compound is able to attenuate memory impairment connected with hypofunction of glutamate transmission in a murine model of schizophrenia.


Assuntos
Aprendizagem da Esquiva/efeitos dos fármacos , Canabidiol/farmacologia , Maleato de Dizocilpina/toxicidade , Memória/efeitos dos fármacos , Esquizofrenia/tratamento farmacológico , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Locomoção/efeitos dos fármacos , Masculino , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Camundongos , Esquizofrenia/etiologia
15.
Brain Res ; 1773: 147701, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34695393

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease characterized by memory decline and impaired hippocampal synaptic plasticity. The serotonin 5-HT4 receptor is involved in learning and memory processes. This study explored the effects of chronic stimulation of 5-HT4R on cognition, memory, long-term potentiation (LTP), paired-pulse ratio (PPR), and neuronal apoptosis in a rat model of amyloid-beta (Aß)-induced AD. Thirty-five male Wistar rats were randomly divided into three groups as follows: the sham, Aß, and Aß + BIMU8 groups. Aß (6 µg/µl) was administrated by intracerebroventricular (icv) injection. The animals were treated with BIMU8 (1 µg/µL, ICV) as a 5-HT4R agonist for 30 days. Memory and behavioral changes were assessed by the passive avoidance learning, novel object recognition, open field, and elevated plus maze tests. Hippocampal synaptic plasticity was evaluated in the dentate gyrus (DG) in response to the stimulation applied to the perforant pathway. Furthermore, neuronal apoptosis was measured in the hippocampus. Data were analyzed by SPSS version 19 using one-way ANOVA, followed by Tukey's post hoc test. Aß induced memory deficits and neuronal loss and inhibited LTP induction. Aß also increased the normalized PPR. BIMU8 enhanced the slope of the field excitatory postsynaptic potential in LTP and improved cognition behavior. Paired-pulse inhibition or facilitation was not affected by LTP induction in Aß animals receiving the BIMU8. It can be concluded that the stimulation of the 5-HT4 receptor modulated the Aß-induced cognition and memory deficits, probably via a decrease in the hippocampal apoptotic neurons and an improvement in the hippocampal synaptic functions without involving its inhibitory interneurons.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Hipocampo/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Memória/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Receptores 5-HT4 de Serotonina/metabolismo , Agonistas do Receptor 5-HT4 de Serotonina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Aprendizagem da Esquiva/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Giro Denteado/efeitos dos fármacos , Giro Denteado/metabolismo , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Transtornos da Memória/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Wistar
16.
Neurosci Lett ; 764: 136201, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34469712

RESUMO

Basolateral amygdala (BLA) nuclei and their reciprocal connections with prelimbic (PL) and infralimbic (IL) regions of the medial prefrontal cortex (mPFC) are involved in the regulation of fear. 2-Heptanone is released in urine in stressed rats, and the olfactory detection of this odor produces immediate avoidance and alarm reactions and modifies neuronal activity in limbic connections in non-stressed rats. If 2-heptanone acts as a danger signal, then long-lasting actions would be expected. The aim of the present study was to investigate whether the forced inhalation of 2-heptanone modifies the response capacity of the BLA-mPFC circuit in the long term (48 h). Single-unit extracellular recordings were obtained from the PL and IL during electrical stimulation of the BLA (square-wave pulses; 1 ms, 20 µA, 0.3 Hz, 110 stimuli over a total duration of 360 s) in three groups of Wistar rats: control group (no sensory stimulation), unpredictable auditory stimulation group, and 2-heptanone stimulation group. A brief-latency (1 ms), short-duration (5 ms) paucisynaptic response followed BLA stimulation and was unaffected by any sensorial stimulation. The paucisynaptic response was followed by a mostly inhibitory and long-lasting (>750 ms) afterdischarge in the control and auditory stimulation groups. In the 2-heptanone group, the inhibitory afterdischarge shifted to an excitatory afterdischarge after ∼250 ms in the PL and after ∼500 ms in the IL. Importantly, the rats that were included in this study were born in local housing facilities. Thus, these animals were never in contact with predators and instead in contact with only conspecifics. These results indicate that the forced inhalation of 2-heptanone is able to modify BLA-mPFC responsivity in the long term. 2-Heptanone decreases inhibitory control of the amygdala over mPFC activity. Disinhibition of the mPFC may lead to the adaptive expression of defensive behaviors, even in animals that are not in the presence of predators.


Assuntos
Aprendizagem da Esquiva/efeitos dos fármacos , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Medo/efeitos dos fármacos , Cetonas/administração & dosagem , Córtex Pré-Frontal/efeitos dos fármacos , Estimulação Acústica/métodos , Administração por Inalação , Animais , Aprendizagem da Esquiva/fisiologia , Complexo Nuclear Basolateral da Amígdala/fisiologia , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Medo/psicologia , Masculino , Vias Neurais/efeitos dos fármacos , Córtex Pré-Frontal/fisiologia , Ratos
17.
Neuropharmacology ; 198: 108782, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492286

RESUMO

The Microbiota-Gut-Brain axis (MGBA) is a bidirectional communication pathway between gut bacteria and the central nervous system (CNS) (including the intestine) that exerts a profound influence on neural development, neuroinflammation, activation of stress response and neurotransmission, in addition to modulating complex behaviours, such as sociability and anxiety. Several MGBA modulating approaches are possible, such as probiotic administration. A reasonable pharmacological approach would also be the contemporarily administration of both prebiotics and postbiotics. To test this hypothesis, we probed the effects of α-lactalbumin (ALAC; a prebiotic in the dose range of 125-500 mg/kg) and sodium butyrate (NaB; a postbiotic in the dose range of 30-300 mg/kg) alone and in combination. We used two animal behavioural models of idiopathic autism, (BTBR mice) and anxiety/depression (chronic unexpected mild stress - CUMS mice) respectively, using several standard behavioural paradigms such as Three-chamber social interaction test, Marble burying assay, depression-, anxiety- and memory-tests. In BTBR autistic mice, we found that both ALAC and NaB improve animal sociability, and memory in the passive avoidance (PA); drug combination was more effective in almost all tests also reducing immobility time in the forced swimming test (FST), which was not affected by single drug administration. Similarly, in the CUMS mice, single drug administration was effective in improving: 1) depressive-like behaviour in the FST and sucrose preference test; 2) memory and learning in the PA, novel object recognition and Morris water maze tests. Drug combination was again more effective than single drug administration in most cases; however, in the CUMS model, neither single drug or combination was effective in the elevated plus maze test for anxiety. Our results suggest that in both models, ALAC and NaB combination is more effective in improving some pathological aspects of animal behaviour than single administration and that the prebiotic/postbiotic approach should be considered a reasonable approach for the manipulation of the MGBA to improve efficacy.


Assuntos
Transtorno Autístico/prevenção & controle , Eixo Encéfalo-Intestino , Depressão/prevenção & controle , Microbioma Gastrointestinal , Prebióticos , Animais , Ansiedade/psicologia , Transtorno Autístico/psicologia , Aprendizagem da Esquiva/efeitos dos fármacos , Comportamento Animal , Ácido Butírico/farmacologia , Depressão/psicologia , Modelos Animais de Doenças , Sinergismo Farmacológico , Humanos , Lactalbumina/farmacologia , Masculino , Memória , Camundongos , Camundongos Endogâmicos C57BL , Comportamento Social , Estresse Psicológico/psicologia , Natação/psicologia
18.
Brain Res ; 1771: 147645, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34480951

RESUMO

Anti-epileptic drugs (AEDs) are the mainstay of epilepsy treatment but these may be a potential risk factor for behavioral disturbances particularly depression which requires treatment. In this study, the effect of antidepressant sertraline (SRT) in combination with AEDs sodium valproate (SV) and levetiracetam (LEV) on seizures, cognitive impairment and oxidative stress in rats was evaluated. After administration of 24th injection of pentylenetetrazole (PTZ), 77.8% rats were kindled. Administration of SRT showed no protective effect on kindling development while SV was 100% protective. With LEV 42.9% were kindled. On combining SRT with SV or LEV 25% and 20% rats were kindled. A significant increase in latency to reach platform zone in Morris water maze(MWM), and increased transfer latencies in Elevated plus maze(EPM) was observed in PTZ kindled rats as compared to normal control on day 49 and when LEV was combined with SRT. In EPM test, however none of the drug treatments had any effect on transfer latencies except LEV pretreated kindled group. In Passive avoidance (PA) test, kindling was associated with a significant decrease in retention time(p = 0.018) while LEV and SV had no effect. The PTZ kindled rats showed significantly higher malondialdehyde(MDA) levels in brain hippocampus(p = 0.0286) while both SRT and SV were associated with significantly lower MDA levels as compared to kindled control group. In case of glutathione (GSH), kindling had no significant effect. The use of sertraline for depression in persons with epilepsy on AEDs needs to be carefully evaluated and monitored due to likelihood of individual variation.


Assuntos
Anticonvulsivantes/farmacologia , Convulsivantes , Excitação Neurológica/efeitos dos fármacos , Pentilenotetrazol , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Sertralina/farmacologia , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Transtornos Cognitivos/induzido quimicamente , Transtornos Cognitivos/prevenção & controle , Glutationa/metabolismo , Levetiracetam/farmacologia , Masculino , Aprendizagem em Labirinto , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Convulsões/induzido quimicamente , Convulsões/prevenção & controle , Ácido Valproico/farmacologia
19.
Neuropharmacology ; 199: 108797, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34547331

RESUMO

There is strong evidence that ethanol entails aversive effects that can act as a deterrent to overconsumption. We have found that in doses that support the development of a conditioned taste aversion ethanol increases the activity of tyrosine hydroxylase (TH) positive neurons in the locus coeruleus (LC), a primary source of norepinephrine (NE). Using cre-inducible AAV8-ChR2 viruses in TH-ires-cre mice we found that the LC provides NE projections that innervate the rostromedial tegmental nucleus (RMTg), a brain region that has been implicated in the aversive properties of drugs. Because the neurocircuitry underlying the aversive effects of ethanol is poorly understood, we characterized the role of the LC to RMTg circuit in modulating aversive unconditioned responses and binge-like ethanol intake. Here, both male and female TH-ires-cre mice were cannulated in the RMTg and injected in the LC with rAVV viruses that encode for a Gq-expressing designer receptor exclusively activated by designer drugs (DREADDs) virus, or its control virus, to directly control the activity of NE neurons. A Latin Square paradigm was used to analyze both 20% ethanol and 3% sucrose consumption using the "drinking-in-the-dark" (DID) paradigm. Chemogenetic activation of the LC to RMTg pathway significantly blunted the binge-ethanol drinking, with no effect on the sucrose consumption, increased the emission of mid-frequency vocalizations and induced malaise-like behaviors in mice. The present findings indicate an important involvement of the LC to RMTg pathway in reducing ethanol consumption, and characterize unconditioned aversive reactions induced by activation of this noradrenergic pathway.


Assuntos
Comportamento Animal/fisiologia , Consumo Excessivo de Bebidas Alcoólicas/fisiopatologia , Consumo Excessivo de Bebidas Alcoólicas/terapia , Locus Cerúleo/fisiologia , Norepinefrina/fisiologia , Área Tegmentar Ventral/fisiologia , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/fisiologia , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Transdução de Sinais/fisiologia , Vocalização Animal/efeitos dos fármacos , Vocalização Animal/fisiologia
20.
Brain Res ; 1770: 147630, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34450117

RESUMO

Memory extinction has been used in behavioral therapy to treat post-traumatic stress disorders. It was demonstrated that memory reactivation before extinction could facilitate this process. However, the mechanisms involved are still unclear. Here, we investigated the participation of two regions of the ventromedial prefrontal cortex (vmPFC), the infralimbic (IL) and prelimbic (PL), in the memory reactivation modulatory effect of fear extinction. We confirmed that the reactivation facilitates the fear extinction in an inhibitory aversive task; however, when the muscimol (a GABAergic agonist) is infused in IL or PL vmPFC after reactivation, extinction's facilitation was not observed. These findings support the idea that the reactivation can modulate the fear extinction process, facilitating it, and that this effect requires the activation of both IL and PL regions of vmPFC.


Assuntos
Aprendizagem da Esquiva/fisiologia , Extinção Psicológica/fisiologia , Memória/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Extinção Psicológica/efeitos dos fármacos , Agonistas de Receptores de GABA-A/farmacologia , Masculino , Memória/efeitos dos fármacos , Muscimol/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...